

An example of wind forecast improvement using NWP predictors on a buoy in the Basque Country eman ta zabal zazu

Sheila Carreno-Madinabeitiaa^{c,*}, Gabriel Ibarra-Berastegi^{b,d}, Jon Sáenz^{c,d}, Eduardo Zorita^e, Alain Ulazia^f

- ^a TECNALIA, Parque Tecnológico de Álava, Albert Einstein 28, E-01510 Vitoria- Gasteiz (Araba/Álava), Spain
- b Faculty of Engineering, NE and Fluid Mechanics Department, University of the Basque Country, Bilbao, Spain
- ^c Faculty of Science and Technology, Applied Physics II Department, University of the Basque Country, Leioa, Spain
- d Joint Research Unit. Spanish Institute of Oceanography-University of the Basque Country. Plentzia Itsas Estazioa. Plentzia, Spain
- ^e Institute of Coastal Research, Helmholtz-Zentrum-Geesthacht, Geesthacht, Germany
- ^f Faculty of Engineering, NE and Fluid Mechanics Department, University of the Basque Country, Eibar, Spain

Introduction

The goal of the research is to get a wind forecast model for the next 24 hours, to perform reliable operational forecasting.

Data

Hourly wind data (U and V components) at 00 UTC and 12 UTC:

- Observational in Bilbao-Bizkaia buoy (Fig. 1)
- ERAI [1] NWF model:
- Predictors from analyses (MsI, U10m, V10m and t2m) (Fig. 2)
- Forecasts steps at 03h, 06h, ..., 24h in the nearest grid point (Fig. 1)

The data cover the period from 2007 to 2014, (50% train, %50 test)

[Fig. 1 Bilbao Bizkaia buoy (green) and the nearest grid point from ERAI (red)]

[Fig. 2 ERAI domain used for reanalysis data]

Helmholtz-Zentrum Geesthacht

Centre for Materials and Coastal Research

Methodology

Extended Principal Component Analysis (ExtEOFs) [2] are used and the forecast quality at each horizon is estimated by means of a bootstrap algorithm with 1000 samples.

The methods used and compared are:

- Persistence
- Lineal regression (LR) [3]
- Random forests (RF) [4,5]
- Analogs with Eclidean norm (AN_EU) [6]
- Analogs with Maximun Cosine metric (AN_CO).

Results

[Fig. 3 Persistence, ERAI and RF (with ERAI predictors at 03h, 06h, ..., 24h) forecast for the next 24 hours of wind U, V components at Bilbao Bizkaia buoy]

[Fig. 4 Persistence, ERAI, RF, RL, AN_EU, and AN_Co forecasts for the next 24 hours of wind U, V components at Bilbao Bizkaia buoy]

R [7].

Acknowledgements

This work has been funded by the Spanish

Government, MINECO project CGL2016-

76561-R (MINECO/EU ERDF) and RTC-

2015-3795-3 project. Also by the University of

the Basque Country projects GIU17/002 and

PES17/23. Most of the calculations and plots

have been carried out within the framework of

Summary and Discussion

- The best model for wind forecast during the first three hours is Persistence.
- In the interval [04h, 24h] the statistical models are the best option
- Carefully designed statistical methods allow to beat the persistence and numerical forecasts from ERAI
- The differences between statistical methods are due to the accuracy of the predictors and the location, instead of the complexity of the method.

References

Contact info:

[1] Dee, D. P. et al. 2011. "The ERA-Interim Reanalysis: Configuration and Performance of the Data Assimilation System." Quarterly Journal of the Royal Meteorological Society 137(656): 553–97. [2] Weare, B. C., & Nasstrom, J. S. (1982). Examples of extended empirical orthogonal function analyses. Monthly Weather Review, 110(6), 481-485.

[3] Weisberg, S. 2005. "Applied Linear Regression." Wiley, New Jersey (2005).

[4] Hastie, Trevor, Robert Tibsharani, and Jerome Friedman. 2001. "Springer Series in Statistics The Elements of." The Mathematical Intelligencer 27(2): 83–85.

[5] Breiman, Leo. 2001. "Randomforest2001.": 1–33.

[6] Zorita, E, and H von Storch. 1999. "The Analog Method as a Simple Statistical Downscaling Technique:comparison with More Complicated Methods." Journal of Climate 12: 2474–89. [7] R Core Team. 2016. "R: A Language and Environment for Statistical Computing." R Foundation for Statistical Computing, Vienna, Austria (2016). https://www.r-project.org/.

TECNALIA